
Chapter 2

Data Assimilation

The goal of this Chapter is to develop a comprehensive set of estimation equations for
assimilating remote sensing data into a model of land surface dynamics. The hydrologic
model itself is described in detail in Chapters 3 and 4.
In Section 2.1 we first define the state and measurement equations in a general form.

From this general formulation, we then derive the nonlinear estimation equations (Euler-
Lagrange equations) using a variational technique. Sections 2.2 and 2.3 provide an overview
of the representer algorithm which is used to solve for the estimates.
The focus of Section 2.4 is to derive the posterior covariances of the state and the

measurements within the representer approach. In Section 2.5 we briefly discuss the nature
of the representer approach as a data space search engine and the opportunities for data
compression and for the a posteriori assessment of the observing system.

2.1 General Formulation of the Estimation Problem

2.1.1 State and Measurement Equations

We formulate the state in vector form, assuming that the model equations have been dis-
cretized in space but not in time. In other words, the components of the state vector
correspond to state variables at discrete spatial nodes but depend continuously on time.
There are two parts to the state vector: the vector X(t) of length NX which obeys a set of
implicit algebraic equations, and the vector Y (t) of length NY which obeys a set of ordinary
differential equations. In a land surface model, the storage terms of some canopy states,
for example the canopy temperature, are typically neglected. Therefore such canopy states
obey diagnostic (algebraic) equations. Soil moisture and temperature, on the other hand,
have significant memory through storage of water and energy in the soil. Such prognostic
variables are subject to ordinary differential equations. For details on the exact definition
of X and Y within the land surface model see Section 4.2. Together, X and Y obey the
state equation

0 = φ(X,Y ;α) +DνPνν

∂Y

∂t
= ϕ(X,Y ;α) +Dω(Y )Pωω

(2.1)

The operators φ(X,Y ;α) and ϕ(X,Y ;α) depend nonlinearly on the state and on the un-
certain parameter vector α of length Nα. In the soil moisture application, these parameters
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could for example be the saturated hydraulic conductivities. The state equation also in-
cludes the process noise terms ν(t) and ω(t), which are time-dependent vectors of length Nν

and Nω, respectively.
The diagonal matrices Dν and Dω of size NX and NY , respectively, account for scaling

between the states and the process noise. To facilitate the estimation, it is important that
all variables be scaled. On the other hand, we would like to directly relate the process noise
to a physical flux. As a result, it is necessary to account for scaling between the states and
the process noise. We also include a formal dependence Dω(Y ) of the scaling matrix on the
state, which we will need for the soil moisture application. From the spatial discretization,
we usually get a matrix multiplying the time derivative. We include this factor in the
operator ϕ and the matrix Dω.
Finally, the process noise does not necessarily affect all components of the state vector.

The NX ×Nν matrix Pν and the NY × Nω matrix Pω serve the purpose of projecting the
process noise onto just those components of the state vector that we consider subject to
model errors. In this sense, the choice of Pν and Pω partially reflect our assumptions on
the model’s shortcomings. Both Pν and Pω contain ones and zeros only.
The state equation (2.1) is subject to the initial condition

Y |t=0 = Y0(β) (2.1a)

which is parameterized by the uncertain vector β of length Nβ. Section 4.3 explains why we
need such a nonlinear parameterization. Without loss of generality, we have set the initial
time to zero. The final time of the estimation interval is denoted with tf .
Measurements, and in particular remote sensing data, are not necessarily direct obser-

vations of the state. We therefore introduce a nonlinear measurement equation.

Z =M [X,Y ] + v (2.2)

All NZ individual measurements are collected into the data vector Z and are corrupted
by the measurement noise v. The measurement operator M [·] is a vector-valued, nonlinear
functional operating on vector-valued functions (e.g. the state vector). For later use, we
rewrite the measurement operator according to

M [X,Y ] =

tf∫
0

[δ]f(X,Y )dt (2.3)

where

[δ] ≡ diag {δ(t− t1), δ(t − t2), . . . , δ(t − tNZ )} (2.3a)

Both M [X,Y ] and f(X,Y ) are vectors of length NZ . Whereas M [X,Y ] is a (vector-
valued) functional, f(X,Y ) ≡ f(X(t), Y (t)) is a (vector-valued) function of the state vector
evaluated at time t. For all practical purposes, both M [·] and f(·) can be thought of as the
measurement operator. The scalar Dirac delta function for time tk is denoted with δ(t− tk),
and diag{·} stands for a diagonal matrix with the argument of diag{·} on the diagonal and
zeros elsewhere. The formulation of (2.3) implies that the measurement Zk has been taken
at time tk. Note that the tk are not necessarily all different. Two measurements can be
taken at the same time, for example as different pixels of the same remote sensing image.
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But note that (2.3) constrains the set of possible measurements to point measurements in
time, i.e. we cannot express measurements which integrate the state over time. For the soil
moisture application, we will not need such measurements.
For the statistics of the process noise ν and ω, the measurement noise v, and the pa-

rameters α and β we assume

ν(t) ≡ 0 ν(t1)ν(t2)T = Cν(t1, t2)

ω(t) ≡ 0 ω(t1)ω(t2)T = Cω(t1, t2)

v = 0 vvT = Cv (2.4)

(α− α) = 0 (α− α)(α − α)T = Cα

(β − β) = 0 (β − β)(β − β)T = Cβ

where the overbar is the expectation operator. We generally denote the covariance of a
random variable ξ with Cξ. The superscript T denotes the matrix transpose. The prior
values α and β are our best guesses for the parameters prior to using the data Z. Moreover,
we assume that all cross-covariances between ν, ω, v, α, and β vanish.

ω(t)ν(t′)T ≡ 0 vν(t)T ≡ 0 αν(t)T ≡ 0 βν(t)T ≡ 0

vω(t)T ≡ 0 αω(t)T ≡ 0 βω(t)T ≡ 0 (2.4a)

vαT = 0 vβT = 0 (α− α)(β − β)T = 0

It is important to keep in mind that we only consider second-order statistics and implicitly
assume distributions to be Gaussian or at least close to Gaussian. The computation of the
reduced objective (Section 2.3.6) and of the posterior covariances (Section 2.4) will allow
for tests of this crucial assumption.
Finally note that the measurement error covariance Cv can usually be made block-

diagonal for remote sensing applications. In the soil moisture application, the snapshots
of brightness temperature at different observation times are usually uncorrelated, although
the measurement errors in each image are typically spatially correlated. Arranging the mea-
surements within Z appropriately allows us to express the covariance Cv as a block-diagonal
matrix, with the blocks containing the spatial correlation matrix of the measurement error.

2.1.2 Objective Function

Without loss of generality, we assume that there are no measurements exactly at the initial
or the final time, that is we assume tk ∈ (0, tf ) and use [0, tf ] as the time window for the
inversion. The performance index for the estimation problem is the objective function

J̃ =(Z −M [X,Y ])T C−1v (Z −M [X,Y ])

+ (α− α)T C−1α (α− α) +
(
β − β

)T
C−1β

(
β − β

)
+

tf∫
0

tf∫
0

ν(t′)TC−1ν (t
′, t′′)ν(t′′)dt′dt′′ +

tf∫
0

tf∫
0

ω(t′)TC−1ω (t
′, t′′)ω(t′′)dt′dt′′

(2.5)

which will be minimized with respect to ν(t), ω(t), α, and β subject to the state equa-
tion (2.1) as a constraint. The first term accounts for the misfit between the data and the
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model predictions of the measurements. The weights are given by the inverse covariance
matrices of the measurement errors. The second and third terms penalize the deviation of
the parameter vectors from their prior values α and β. The weights are given by the inverse
covariance matrices C−1α and C−1β of the respective parameters.

Finally, the last two terms accounts for the model error. Note that the weight here is
an inverse covariance function, which is defined by the operator identity

tf∫
0

Cξ(t, t
′)C−1ξ (t

′, t′′)dt′ = δ(t− t′′)INξ (2.6)

where INξ is the Nξ ×Nξ identity matrix and δ(·) is again the Dirac delta function.

2.1.3 Euler-Lagrange Equations

In order to derive the Euler-Lagrange equations, we adjoin the state equation (2.1) and the
initial condition (2.1a) as constraints to the objective function J̃ (2.5). This step introduces
the adjoint variables µ(t), a vector of length NX , as well as λ(t) and λ0, both vectors of
length NY .

J = J̃

− 2

tf∫
0

µT (φ(X,Y ;α) +DνPνν) dt

+ 2

tf∫
0

λT
(
∂Y

∂t
− ϕ(X,Y ;α)−Dω(Y )Pωω

)
dt+ 2λT0 (Y |t=0 − Y0(β))

(2.7)

The minimization of the objective function is a straightforward application of the calculus of
variations [Courant and Hilbert, 1953; Lanczos, 1966]. Details of the derivation are outlined
in Appendix A.1. We eventually get a set of equations for the estimates X̂ , Ŷ , ν̂, ω̂, α̂,
and β̂ of the state, the process noise, and the parameters, respectively. We call this set the
Euler-Lagrange equations.

Forward Equation

0 = φ(X̂, Ŷ ; α̂) +DνPν ν̂

∂Ŷ

∂t
= ϕ(X̂, Ŷ ; α̂) +Dω(Ŷ )Pωω̂

(2.8)

Ŷ |t=0 = Y0(β̂) (2.8a)
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Backward Equation

0 =
∂̂φ

∂X

T

µ+
∂̂ϕ

∂X

T

λ+
∂̂f

∂X

T

[δ]C−1v

(
Z −M [X̂, Ŷ ]

)
−
∂λ

∂t
=
∂̂φ

∂Y

T

µ+
∂̂ϕ

∂Y

T

λ+
∂[Dω(Ŷ )Pωω̂]

∂Y

T

λ

+
∂̂f

∂Y

T

[δ]C−1v

(
Z −M [X̂, Ŷ ]

)
(2.9)

λ|t=tf = 0 (2.9a)

Parameter Update

α̂ = α+Cα

tf∫
0

(
∂̂φ

∂α

T

µ+
∂̂ϕ

∂α

T

λ

)
dt

β̂ = β + Cβ
∂̂Y0
∂β

T

λ|t=0

(2.10)

Noise Update

ν̂ =

tf∫
0

Cν(t, t
′)P Tν D

T
ν µ(t

′)dt′

ω̂ =

tf∫
0

Cω(t, t
′)P Tω Dω(Ŷ (t

′))Tλ(t′)dt′

(2.11)

Note that all partial derivatives of φ, ϕ, f , and Y0 are evaluated at the estimates X̂, Ŷ , α̂,
and β̂, for which we use the shortcut notation

∂̂φ

∂X
≡

∂φ

∂X

∣∣∣∣
X̂,Ŷ ;α̂

∂̂ϕ

∂α
≡
∂ϕ

∂α

∣∣∣∣
X̂,Ŷ ;α̂

∂̂f

∂Y
≡

∂f

∂Y

∣∣∣∣
X̂,Ŷ

etc. (2.12)

Equation (2.8) resembles the state equation and is solved forward in time subject to
the initial condition (2.8a). This so-called forward equation uses the estimates of the pa-
rameters and is forced with the estimate of the process noise. The parameter update (2.10)
and the process noise update (2.11) are in turn determined by the solution of the adjoint
equation (2.9), which is subject to the terminal condition (2.9a). Since the adjoint equa-
tion is solved backward in time, we call it the backward equation. Note that the backward
equation is linear in the adjoint variables µ and λ. At measurement times tk, the backward
equation is forced with the misfit between the data and the estimates of the observations.
But to compute the latter, we need the state estimates from the forward equation (2.8).
Obviously, the Euler-Lagrange equations present a highly coupled, nonlinear set of equa-

tions. Notice that even for linear state and measurement equations the Euler-Lagrange
equations are coupled through the data misfit term in the backward equation. This cou-
pling leaves us with a two-point boundary value problem. Sections 2.2 and 2.3 provide
details on how the Euler-Lagrange equations are solved.
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2.2 Solving the Nonlinear Euler-Lagrange Equations: Iter-

ated Representers

A simple solution strategy for the Euler-Lagrange equations is to iterate simultaneously on
all the nonlinear terms as well as on the data misfit coupling term in the backward equation.
Breaking the coupling in this way leaves us with two initial value problems at each iteration,
which are easily integrated. However, this approach failed to converge for the soil moisture
problem. Similar difficulties for oceanographic applications have been reported by Bennett
[1992].

Alternatively, we can solve the nonlinear estimation problem as a sequence of linear
estimation problems [Bennett, 1992]. Rather than linearizing all the coupling terms, we
can linearize the Euler-Lagrange equations with a standard Taylor series expansion around
a given trajectory and at the same time keep the coupling through the data misfit term in
the backward equation. We are then left with having to solve a linear two-point boundary
value problem in every iteration. Each of these two-point boundary value problems cor-
responds to solving the estimation problem for a set of linearized state and measurement
equations. Equivalently, if we consistently linearize the state and measurement equations
with a standard Taylor series expansion around the given trajectory, and if we then derive
the estimation equations for these linearized state and measurement equations, we find that
they are exactly the linearized Euler-Lagrange equations. Below we outline this approach
in detail.

An elegant technique for solving a linear Euler-Lagrange system is the representer ap-
proach [Bennett, 1992; Bennett, 1999]. In this approach the Euler-Lagrange equations
are decoupled by introducing a series expansion solution of the estimate around so-called
representer fields. The representers are the prior cross-covariances of the measurement pre-
dictions with the state, which implies that there are as many representer fields as there are
measurements. Fortunately, we do not have to compute every representer field in order to
get the best estimate. It is sufficient to compute a sequence of suitable linear combinations
of the representer fields. This approach is called the indirect representer method, and we
describe the technique in detail in Section 2.3. We use the indirect representer method in
combination with the iteration on the nonlinearity to obtain the estimates X̂, Ŷ , α̂, and β̂.
After the estimates have been computed, we can use the representer method to compute
some posterior covariances (Section 2.4). A summary of the algorithm can be found in
Figure 2.1 and in Section 2.3.5.

2.2.1 Tangent-linear Model

In meteorology and oceanography the state equation linearized around a trajectory is called
the tangent-linear model. Our approach for solving the nonlinear Euler-Lagrange equations
(2.8)–(2.11) is based on successive tangent-linearizations of the state and measurement
equations. In this Section, we outline the linearization procedure.

Let Xη , Y η, ωη, αη, and βη denote the best estimates of the previous iteration level
η. At the current iteration level η + 1, we linearize the state and measurement equations
around the trajectories Xη(t), Y η(t), and ωη(t) as well as around the previous parameter
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estimates αη and βη. Simplifying the linearization in ωη according to

Dω(Y )Pωω ≈ Dω(Y
η)Pωω

η +
∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

(ω − ωη) +
∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

(Y − Y η)

≡ Dω(Y
η)Pωω +

∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

(Y − Y η)

and neglecting terms of second and higher order, we obtain the tangent-linear state equation

0 =φ(Xη , Y η;αη) +
∂φ

∂X

∣∣∣∣
η

(X −Xη) +
∂φ

∂Y

∣∣∣∣
η

(Y − Y η) +
∂φ

∂α

∣∣∣∣
η

(α− αη)

+DνPνν

∂Y

∂t
=ϕ(Xη , Y η;αη) +

∂ϕ

∂X

∣∣∣∣
η

(X −Xη) +
∂ϕ

∂Y

∣∣∣∣
η

(Y − Y η) +
∂ϕ

∂α

∣∣∣∣
η

(α− αη)

+Dω(Y
η)Pωω +

∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

(Y − Y η)

(2.13)

Y |t=0 =Y0(β
η) +

∂Y0
∂β

∣∣∣∣
η

(β − βη) (2.13a)

The tangent-linear measurement equation reads

Z =M [Xη , Y η] + L[X −Xη , Y − Y η] + v

Lk[X,Y ] ≡

tf∫
0

{
∂fk
∂X

∣∣∣∣
η

X(t) +
∂fk
∂Y

∣∣∣∣
η

Y (t)

}
δ(t− tk)dt

≡
∂fk
∂X

∣∣∣∣
η,tk

X(tk) +
∂fk
∂Y

∣∣∣∣
η,tk

Y (tk)

(2.14)

We used (2.3) to get this explicit expression for the linear (vector-valued) functional L[·],
which can be interpreted as the slope of the measurement operator. For the partial deriva-
tives we use the obvious short-cut notation

∂φ

∂X

∣∣∣∣
η

≡
∂φ

∂X

∣∣∣∣
Xη ,Y η ;αη

∂ϕ

∂α

∣∣∣∣
η

≡
∂ϕ

∂α

∣∣∣∣
Xη ,Y η ;αη

∂f

∂Y

∣∣∣∣
η

≡
∂f

∂Y

∣∣∣∣
Xη ,Y η

etc.

Note that the linear operator L[·] of the tangent-linear measurement equation changes
with each iteration. In particular, L[·] of the current iteration level η + 1 is obtained
by evaluating the partial derivative of f(·) at the best estimate of the previous iteration
level. Consequently, L[·] should carry a superscript η + 1. However, we opt to drop this
superscript because it is easy to infer from the context.

2.2.2 Linearized Euler-Lagrange Equations

We obtain a “linearized” version of the objective function by introducing the linearizations
of (2.13) and (2.14) into (2.7). Following the general procedure outlined in Appendix A.1 for
the derivation of the nonlinear Euler-Lagrange equations, we can easily derive the linearized
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Euler-Lagrange equations from the “linearized” objective function.

0 =
∂φ

∂X

∣∣∣∣T
η

µη+1 +
∂ϕ

∂X

∣∣∣∣T
η

λη+1

+
∂f

∂X

∣∣∣∣T
η

[δ]C−1v
(
Z −M [Xη , Y η]− L[Xη+1 −Xη , Y η+1 − Y η]

)
−
∂λη+1

∂t
=
∂φ

∂Y

∣∣∣∣T
η

µη+1 +
∂ϕ

∂Y

∣∣∣∣T
η

λη+1 +
∂[Dω(Y )Pωω]

∂Y

∣∣∣∣T
η

λη+1

+
∂f

∂Y

∣∣∣∣T
η

[δ]C−1v
(
Z −M [Xη, Y η]− L[Xη+1 −Xη, Y η+1 − Y η]

)
(2.15)

λ|η+1
t=tf
= 0 (2.15a)

αη+1 = α+ Cα

tf∫
0

(
∂φ

∂α

∣∣∣∣T
η

µη+1 +
∂ϕ

∂α

∣∣∣∣T
η

λη+1

)
dt

βη+1 = β + Cβ
∂Y0
∂β

∣∣∣∣T
η

λ|η+1
t=0

(2.16)

νη+1 =

tf∫
0

Cν(t, t
′)P Tν D

T
ν µ

η+1(t′)dt′

ωη+1 =

tf∫
0

Cω(t, t
′)P Tω [Dω(Y

η(t′))]Tλη+1(t′)dt′

(2.17)

0 =φ(Xη, Y η;αη) +
∂φ

∂X

∣∣∣∣
η

(
Xη+1 −Xη

)
+

∂φ

∂Y

∣∣∣∣
η

(
Y η+1 − Y η

)
+
∂φ

∂α

∣∣∣∣
η

(
αη+1 − αη

)
+DνPνν

η+1

∂Y η+1

∂t
=ϕ(Xη , Y η;αη) +

∂ϕ

∂X

∣∣∣∣
η

(
Xη+1 −Xη

)
+
∂ϕ

∂Y

∣∣∣∣
η

(
Y η+1 − Y η

)
+
∂ϕ

∂α

∣∣∣∣
η

(
αη+1 − αη

)
+Dω(Y

η)Pωω
η+1 +

∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

(
Y η+1 − Y η

)
(2.18)

Y |η+1
t=0
=Y0(β

η) +
∂Y0
∂β

∣∣∣∣
η

(
βη+1 − βη

)
(2.18a)

Having completed iteration level η, we need to solve these linearized Euler-Lagrange equa-
tions for the new estimates µη+1, λη+1, αη+1, βη+1, νη+1, ωη+1, Xη+1 and Y η+1. The
iteration can be initialized by setting the initial best estimates Xη and Y η for η = 0 equal
to the prior trajectories X and Y of the nonlinear model, which are the solution of the

42



nonlinear Euler-Lagrange equations when no data are available. In particular, X and Y are
defined through

0 = φ(X,Y ;α)
∂Y

∂t
= ϕ(X,Y ;α) Y |t=0 = Y0(β) (2.19)

Note that µ ≡ λ ≡ 0.
As mentioned in the introduction to this Section, the linearized Euler-Lagrange equa-

tions (2.15)–(2.18) can also be obtained by linearizing the nonlinear estimation equations
(2.8)–(2.11). However, care must be taken that the linearization be carried out consistently,
because there is an infinite number of ways in which the Euler-Lagrange equations can be
linearized. Re-deriving the linearized Euler-Lagrange equations from the tangent-linear
model ensures that the meaning of the linearized Euler-Lagrange equations as the iterated
estimation equations of the original problem is preserved.
Although there is no proof or guarantee that the sequence defined above converges, ex-

perience has shown that it converges in practice for forward models that are reasonably close
to linear. For a quasigeostrophic model, Bennett [1992] provides a theorem on convergence
in a doubly-periodic domain. The sequence is then bounded, and so must have points of
accumulation or cluster points, but not necessarily unique limits.
Solving the nonlinear problem as a series of linear estimation problems is clearly moti-

vated by the fact that we are certain to obtain a solution to the linear estimation problem
at each iterate. Before implementing the full estimation technique, it is therefore a good
idea to check whether the tangent-linear model converges to the solution of the nonlinear
forward model, which is equivalent to solving the estimation problem with no data. With-
out fulfilling this prerequisite there is little hope that the sequence will converge when data
are assimilated.

2.3 Solving the Linear Euler-Lagrange Equations: Indirect

Representers

The focus of this Section is to illustrate the representer solution of the linearized Euler-
Lagrange equations (2.15)–(2.18). The representer approach is a very elegant way to de-
couple and solve the linear Euler-Lagrange equations. The approach is based on series (or
representer) expansions for the estimates of the state and its adjoint variable. The series
expansions linearly superimpose the measurement updates from each individual observa-
tion, implying that the representer solution is inherently the solution to a linear estimation
problem.
In essence, the representer solution reduces the size of the space in which the objective

is minimized from infinity to a finite dimension equal to the number of observations. This
promises better convergence behavior than a direct minimization of the objective function
with a gradient search. Fortunately, the indirect representer method allows us to solve for
the estimates without explicitly computing all of the individual representer fields, that is we
do not necessarily have to solve the basic equation (forward or backward) 2NZ times (per
nonlinear iteration). The indirect representer method therefore provides us with a fast way
to get the estimate [Bennett et al., 1996]. If we opt for computing the individual representer
fields after the nonlinear iteration has converged and the estimate has been obtained, the
representer approach also yields a lot of information about the posterior error covariance
(Section 2.4).

43



We conclude this Section with a short discussion of the hypothesis test associated with
the value of the reduced objective function (Section 2.3.6) and a summary of the iterated
indirect representer algorithm (Section 2.3.5).

2.3.1 Representer Expansion

The representer approach is essentially a series expansion solution of the estimation prob-
lem, where the number of unknown coefficients exactly matches the number of available
measurements. For the new estimates of the current iteration level η + 1, we define

Xη+1(t) = X
η+1
(t) +

NZ∑
k=1

bkΞ
k(t) Y η+1(t) = Y

η+1
(t) +

NZ∑
k=1

bkΥ
k(t) (2.20)

µη+1(t) = µη+1(t) +

NZ∑
k=1

bkΩ
k(t) λη+1(t) = λ

η+1
(t) +

NZ∑
k=1

bkΛ
k(t) (2.21)

The 4NZ representer functions Ξ
k(t), Υk(t), Ωk(t) and Λk(t) for the state and its adjoint

are time-dependent vectors of length NX and NY , respectively. We write Υ
k
i in order to

refer to the i-th component of the k-th representer function Υk. The NZ scalar representer
coefficients bk are constant in time. Note that the coefficients are the same for both the
state and the adjoint representers.

The expansion is carried out around the prior fields X
η+1
, Y

η+1
, µη+1, and λ

η+1
, which

are the solutions of the linearized Euler-Lagrange equations (2.15)–(2.18) when no data are

available. In particular, X
η+1
and Y

η+1
are defined through

0 =φ(Xη , Y η;αη) +
∂φ

∂X

∣∣∣∣
η

(
X
η+1
−Xη

)
+

∂φ

∂Y

∣∣∣∣
η

(
Y
η+1
− Y η

)
+
∂φ

∂α
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(
X
η+1
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∂ϕ

∂Y
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∂ϕ

∂α
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∂Y

∣∣∣∣
η

(
Y
η+1
− Y η

)
(2.22)

Y |η+1
t=0
=Y0(β

η) +
∂Y0
∂β

∣∣∣∣
η

(
β − βη

)
(2.22a)

and µη+1 ≡ λ
η+1
≡ 0. Recall that Xη and Y η are the best estimates from the previous

iteration and serve as the trajectories around which we linearize.

It is easy to see that the prior fields for iteration level η + 1 as defined above are the
tangent-linear approximations of the prior trajectory (2.19) of the nonlinear problem. Obvi-
ously, one cannot simultaneously linearize around the previous estimate and the nonlinear
prior trajectory (2.19). In order to achieve a dynamically consistent estimate, we must
linearize around the previous best estimate, and the accuracy of the prior must be compro-
mised. Therefore the nonlinear estimate cannot be strictly optimal. However, if the model
is reasonably linear, the error so introduced is bearable.
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On the Notation

Please note again that the superscript k that is used for the representer fields stands for the
number of the measurement that corresponds to the representer function in question. This
superscript is an integral part of the name of the representer function. Individual vector
components of a given representer field are denoted with subscripts, usually i or j. For
instance, Ξki denotes the i-th component of the representer field that corresponds to the k-
th measurement. In contrast, the representer coefficients carry a subscript k. This subscript
represents the number of the measurement to which the representer coefficient corresponds.
It also serves as the index of the vector component when the representer coefficients bk are
collected into the vector b, in analogy to assembling the individual measurements in the
data vector Z.

Moreover, it is important to note that the representer fields and the representer coeffi-
cients like the estimates and the prior trajectories of the states change with every iteration.
Consequently, bk, Ξ

k, Υk, Ωk and Λk should have an additional superscript η + 1. Again,
we opt to drop this superscript because it is easy to infer from the context. Unlike for the
states, we never have to use representer fields or coefficients from different iteration levels
in the same equation. Finally note that the priors of the original uncertain parameters α,
β, and ν(t) ≡ ω(t) ≡ 0 never change!

2.3.2 Representer Equations

By inserting the adjoint representer expansion (2.21) into the backward equation (2.15),
and choosing

b = C−1v
(
Z −M [Xη , Y η]− L[Xη+1 −Xη , Y η+1 − Y η]

)
(2.23)

we can derive an equation for the adjoint representers.

Adjoint Representer Equations
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∂φ
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∣∣∣∣T
η
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∣∣∣∣T
η
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∂fk
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∣∣∣∣T
η

−
∂Λk

∂t
=

∂φ

∂Y
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Ωk +
∂ϕ

∂Y
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∂[Dω(Y )Pωω]

∂Y

∣∣∣∣T
η

Λk + δ(t− tk)
∂fk
∂Y

∣∣∣∣T
η

(2.24)

Λk|t=tf = 0 (2.24a)

Recall that the k-th measurement is taken at time tk. If we compare the adjoint representer
equation (2.24) with the backward equation (2.15), we can see that the two equations are
very similar. Whereas the backward equation is forced with the posterior data misfit, the
adjoint representer equation is forced with a single unit impulse at one measurement time
and location. We can therefore solve for the adjoint representer fields without having to
know the estimate in advance.

Next, we derive an equation for the state representers by inserting the parameter up-
date (2.16), the process noise update (2.17), and the representer expansions (2.20) and (2.21)
into the forward equation (2.18) and its initial condition (2.18a). Using the definition of
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the prior fields (2.22), we find

State Representer Equations
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(2.25)

Υk|t=0 =
∂Y0
∂β

∣∣∣∣
η

Cβ
∂Y0
∂β

∣∣∣∣T
η

Λk|t=0 (2.25a)

As will be shown in Sections 2.4.1 and A.2.1, the state representer function for the k-th
measurement is equal to the prior cross-covariance of the model prediction for the k-th
measurement and the states at all times and locations. Most importantly, the representer
fields encapsulate only prior information and do not depend on the data. Finally note that
we can solve for the state representers as soon as we have integrated the adjoint representer
fields.

2.3.3 Representer Coefficients and Representer Matrix

In order to derive the representer equations, we defined the representer coefficients as

b = C−1v
(
Z −M [Xη , Y η]− L[Xη+1 −Xη , Y η+1 − Y η]

)
(2.23)

Using the representer expansion (2.20) for the estimate and the linearity of L, we can easily
rewrite (2.23) as

b = U−1
(
Z −M [Xη , Y η]− L[X

η+1
−Xη, Y

η+1
− Y η]

)
(2.26)

where we define

U ≡ Cv +R and [R]kl ≡ Lk[Ξ
l,Υl] (2.27)

Both U and the representer matrix R are symmetric NZ×NZ matrices. We can calculate the
entries of the representer matrix (and hence U) if we compute all NZ individual representer
fields Ξk and Υk, and subsequently apply the operator L of (2.14).
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Obviously, knowledge of the representer matrix suffices to compute the estimate. If we
know the representer matrix, we can solve (2.26) for the representer coefficients. Once we
have the representer coefficients, we can use the definition (2.23) and integrate the backward
equation (2.15). After the backward integration, we can easily calculate the parameter
update (2.16) and the noise update (2.17), and finally solve the forward equation (2.18)
for the state estimates. The coupling between the forward and the backward equations
of the original two-point boundary value problem (2.15)–(2.18) has now been broken by
the representers. The price we pay for breaking the coupling is of course the increased
computational burden.

The representer matrix encapsulates all the relevant prior information. In contrast to
(2.23), Equation (2.26) expresses the representer coefficients entirely in prior terms, except
for the explicit appearance of the data vector Z. For a linear estimation problem we could
even precompute the representer matrix before we know the data, and then solve for the
representer coefficients when the data become available. Solving for the optimal estimates
via explicit computation of the representer matrix is called the direct representer method.

2.3.4 Indirect Representers

In particular for data-rich remote sensing applications, the computational burden for the
calculation of the representer matrix is very heavy, because all NZ individual representer
fields must be integrated. But recall that we really only need the representer coefficients to
compute the estimated fields. Once we have the representer coefficients, we can integrate
the backward equation (2.15) and subsequently the forward equation (2.18). Fortunately,
we do not need to know the representer matrix explicitly in order to get the representer
coefficients. The conjugate gradient technique for solving linear equations like (2.26) does
the trick.

A conjugate gradient solver [Press et al., 1992] successively approximates the solution
of a linear equation. In our case, this means constructing successive approximations of the
representer coefficient vector b. Let us rewrite (2.26) as Ub = rhs, where rhs is obviously the
known prior data misfit. Given an approximation ζ of the representer coefficient vector b,
the conjugate gradient technique only uses the product Uζ to refine the approximation. If
we can supply the conjugate gradient algorithm with the product Uζ for any given vector ζ,
we will eventually find the representer coefficients. We never need to supply the matrix U
itself to the conjugate gradient solver.

It turns out that we can compute the product Uζ without explicit knowledge of the
matrix U (or equivalently R) [Bennett et al., 1996]. All we need to do is solve the representer
equations for a linear combination of inhomogeneities. For a given vector ζ, we solve the
following equations for the fields Ξ and Υ.
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Λ|t=tf = 0
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Having computed the fields Ξ and Υ, we have by way of linearity

Rζ = L[Ξ,Υ]

It is now simple to compute Rζ+Cvζ ≡ Uζ, which is all we need to supply to the conjugate
gradient solver. Note that in the indirect representer approach we are effectively computing
linear combinations of the representer fields, namely Ξ =

∑
k ζkΞ

k and Υ =
∑

k ζkΥ
k.

Numerical issues aside, the conjugate gradient solver for our linear system is guaranteed
to converge after at most NZ iterations, that is we need to compute at most NZ linear
combinations of representer fields. This means that we can only do better compared with
the direct approach of assembling the representer matrix, for which we need exactly NZ

(individual) representer fields. The actual number of iterations for the conjugate gradient
solver depends of course on the problem at hand. For the land surface application, the
savings are substantial. Detailed results on the efficiency of the indirect representer method
are presented in Section 8.2.1.
Finally, preconditioning with an approximation of U (and hence the representer matrix

R) can further improve the convergence speed [Press et al., 1992]. Bennett [1999] discusses
several options for a preconditioner. If only one data type is assimilated, preconditioning
does not seem necessary at all.

2.3.5 Summary of the Iterated Indirect Representer Algorithm

Figure 2.1 shows a flowchart summarizing the iterated indirect representer algorithm. For
simplicity, we omit the diagnostic state vector X in the Figure and in the discussion. We
start by computing the prior state trajectory Y from the nonlinear state equation with
the model errors and the uncertain parameters set to their prior values (2.19). Next, we
initialize the previous best estimate of the first iteration as Y 0 ≡ Y and enter the loop of
iterations on the nonlinearity in the state equation. The iteration on the nonlinearity is the
outer loop of the algorithm.
During each iteration, the state and measurement equations are linearized around the

trajectory of the previous best estimate Y η (2.13)–(2.14). First, we compute the prior

trajectory Y
η+1
of the current iteration (2.22). From this prior trajectory, we derive the
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Posterior covariances

Hypothesis tests

yes

no

η = η+1

Y (t)ηLinearize around 

Y (t) = Y(t)0
Solve nonlinear forward model

for prior trajectory

Converged?

Solve linearized Euler-
Lagrange equations

(t)η+1Y1. Get prior trajectory
and prior data misfit

2. Get representer coeffs
(indirect repr method)

Y (t)η+1for new estimate
3. Bkwd/fwd integrations

η = 0

Figure 2.1: Flowchart for the iterated indirect representer method. A summary of
the algorithm is presented in Section 2.3.5. The diagnostic state X has been omitted
for clarity.
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corresponding prior data misfit. Next, we calculate the representer coefficients of the current
iteration with the indirect representer method (Section 2.3.4). Note that this constitutes an
inner loop in which we successively refine our best estimate of the representer coefficients
with a conjugate gradient algorithm. During each of the inner iterations, we essentially
compute one linear combination of representer fields. After having obtained the representer
coefficients, we finally compute the new estimate Y η+1 using the definition of the representer
coefficients (2.23) in the linearized Euler-Lagrange equations (2.15)–(2.18), which are then
decoupled.
The convergence check is carried out by comparing the previous best estimate Y η to

the current best estimate Y η+1. In particular, we check whether ||Y η − Y η+1|| < εY for a
given threshold εY . Additional convergence checks are done for the uncertain parameters,
for instance ||βη − βη+1|| < εβ. After convergence has been achieved, we may compute
posterior covariances (Section 2.4) and carry out hypothesis tests on the reduced objective
function (Section 2.3.6) or on the posterior data residuals (Section 2.4.1). Note that the
hypothesis test on the reduced objective function does not require any posterior covariance
calculations and can be done at negligible cost.

2.3.6 Reduced Objective Function

The objective function at the minimum is given by

Ĵη+1 =(Z −M [Xη , Y η]− L[X
η+1
−Xη , Y

η+1
− Y η])TU−1 ·

· (Z −M [Xη , Y η]− L[X
η+1
−Xη , Y

η+1
− Y η])

=(Z −M [Xη , Y η]− L[X
η+1
−Xη , Y

η+1
− Y η])T b

(2.28)

and can be evaluated at negligible cost once the representer coefficients are known [Bennett,
1992]. If our assumptions about the model physics and the prior statistics are true, and
if we invoke the central limit theorem in case we do not claim that the priors are exactly
normally distributed, then the reduced objective is a chi-squared random variable with NZ

degrees of freedom

Ĵη+1 ∼ χ2NZ χ2NZ = NZ var(χ2NZ ) = 2NZ (2.29)

We can therefore formulate our assumptions about the model physics (2.1), the measurement
process (2.2), and the prior statistics (2.4) as a null hypothesis and apply the chi-square test
to see whether these assumptions are statistically consistent with the data. Should our null
hypothesis fail the test, we are forced to discard the estimated fields. In this case, however,
we would have learned something about land surface dynamics.
Note that the hypothesis test, much like the estimates, relies on the successive tangent-

linearizations. In the case of nonlinear model dynamics, the test can only be valid approx-
imately.

2.4 Posterior Covariances

After the nonlinear iteration has converged, we can opt for calculating the posterior co-
variances of the state and the observations. These may be obtained by computing the
individual representer functions Ξk and Υk (rather than the linear combinations Ξ and Υ
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of the indirect representer approach) [Bennett, 1992]. This Section provides the expressions
for the posterior covariances as functions of the representers.

Since the problem at hand is nonlinear, the linearized posterior covariances derived in
this Section can at best be approximations of the true posterior covariances. For example,

the prior fields X
η+1
and Y

η+1
depend on the linearization around the previous estimate,

which in turn depends on the data for all but the first iteration. In the derivation of the
posterior covariances, however, we treat the previous estimate as a fixed input around which
we linearize, although strictly speaking the previous estimate is itself a random field.

It is convenient to define short-cut notation for the various deviations that occur. In
general, we use Y for the true state and Y η+1 for the estimate. We denote with Y

η+1
the

prior state as defined in (2.22). For the deviations we define

X(t)−X
η+1
(t) ≡ X ′(t) Y (t)− Y

η+1
(t) ≡ Y ′(t) (2.30)

X(t)−Xη+1(t) ≡ X̃(t) Y (t)− Y η+1(t) ≡ Ỹ (t) (2.31)

and from the representer expansion we have

Xη+1(t)−X
η+1
(t) =

NZ∑
k=1

bkΞ
k(t) Y η+1(t)− Y

η+1
(t) =

NZ∑
k=1

bkΥ
k(t) (2.20)

In other words, Y ′ is the (linearized) prior error and Ỹ is the (posterior) estimation error
of the state.

Similarly, the (linearized) true measurement predictions are M [Xη , Y η]+L[X−Xη, Y −

Y η], the prior measurement predictions are M [Xη, Y η] + L[X
η+1
− Xη, Y

η+1
− Y η], the

estimates for the measured quantities are M [Xη , Y η] + L[Xη+1 −Xη , Y η+1 − Y η], and the
actual measurements are Z. For the deviations we define

v ≡Z − (M [Xη , Y η] + L[X −Xη, Y − Y η]) (2.14)

v̂ ≡Z −
(
M [Xη , Y η] + L[Xη+1 −Xη , Y η+1 − Y η]

)
(2.32)

ṽ ≡ (M [Xη , Y η] + L[X −Xη , Y − Y η])−
(
M [Xη , Y η] + L[Xη+1 −Xη, Y η+1 − Y η]

)
≡L[X −Xη+1, Y − Y η+1] (2.33)

Note that v̂ = v + ṽ. In other words, v is the true measurement error, ṽ is the (posterior)
estimation error of the measurement prediction, and v̂ is the estimate of the measurement
error, or equivalently, the posterior data residual.

Like the representer fields, the deviations defined above are different at each iteration.
Again, we opt to drop the superscript η + 1, as it is clear from the context.

2.4.1 Posterior Covariances

It is a very important fact, not only in the derivation of the posterior error covariances,
that the state representers are equal to the linearized (prior) cross-covariances of the mea-
surement predictions and the states.

Lk[X ′, Y ′]X ′(t) = Ξ
k(t) Lk[X ′, Y ′]Y ′(t) = Υ

k(t) (2.34)
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A proof is given in Appendix A.2.1. Using (2.34) it is easy to derive the posterior covariance
of the state vector.

[CX̃X̃(t1, t2)]ij ≡ X̃i(t1)X̃j(t2) = [CX′X′(t1, t2)]ij −
∑
k

∑
l

Ξki (t1)[U
−1]klΞ

l
j(t2)

[CX̃Ỹ (t1, t2)]ij ≡ X̃i(t1)Ỹj(t2) = [CX′Y ′(t1, t2)]ij −
∑
k

∑
l

Ξki (t1)[U
−1]klΥ

l
j(t2)

[CỸ X̃(t1, t2)]ij ≡ Ỹi(t1)X̃j(t2) = [CY ′X′(t1, t2)]ij −
∑
k

∑
l

Υki (t1)[U
−1]klΞ

l
j(t2)

[CỸ Ỹ (t1, t2)]ij ≡ Ỹi(t1)Ỹj(t2) = [CY ′Y ′(t1, t2)]ij −
∑
k

∑
l

Υki (t1)[U
−1]klΥ

l
j(t2)

(2.35)

The prior error covariance is denoted with CX′X′(t1, t2) etc. Details of the derivation are
presented in Appendix A.2.2. The estimation error covariance for the state indicates how
close to the truth the estimator thinks it is. Its diagonal provides us with error bars around
the state estimate.
The posterior covariance for the estimates of the measured variable at observation times

is

Cṽ ≡ ṽṽT = R−RU
−1R (2.36)

Details of the derivation can be found in Appendix A.2.2. Again, Cṽ indicates how close
to the truth the estimator thinks it is. We can use the diagonal of Cṽ to draw error bars
around the estimates of the measurements.
Finally, we find for the covariance of the posterior data residuals

Cv̂ ≡ v̂v̂T = Cṽ + Cv − CvU
−1R− (CvU

−1R)T (2.37)

For details of the derivation see Appendix A.2.2. We can use Cv̂ to normalize the data resid-
uals after the estimation and to check the algorithm’s underlying statistical assumptions.
This test is particularly powerful when field data are assimilated, because it provides a way
to check whether the estimator is operating in accordance with its statistical assumptions. It
must be stressed, however, that this test relies on the linearizations that have been applied.
Since the model is nonlinear, both ṽ and v̂ already have bias (e.g. M [X,Y ] 6=M [X,Y ]).
Even if we are only interested in the covariance of the posterior data residuals (2.37),

we need a good approximation of the matrix U−1 = (R + Cv)
−1 (2.27). This task is very

computationally demanding, because we need to calculate individual representer functions.
Luckily, we only have to do this once. After the iteration on the nonlinearity of the forward
model has converged, we can switch from the indirect representer technique to computing
individual representers as needed. Depending on the problem at hand, we will likely be able
to get a reasonable approximation of U−1 by calculating only a subset of all representer
functions. Note that data compression (Section 2.5) could be particularly helpful to reduce
the number of individual representers and therefore the dimension of U .

2.4.2 Prior Covariance

In order to get error bars around the state estimate or to reinitialize the algorithm for
subsequent assimilation windows, we need to compute at least the posterior variance of the

52



state, which is given by the diagonal elements of the estimation error covariance (2.35).
Although the storage of the NZ representer fields Υ

k(t) poses a serious problem, a dif-
ficult part in computing the estimation error variance is the prior variance of the state,
namely [CX′X′(t, t)]ii ≡ σ

2
X′i
(t) and [CY ′Y ′(t, t)]ii ≡ σ

2
Y ′i
(t).

For the initialization of a subsequent assimilation interval, we are only interested in the
posterior error covariance of the state at the final time of the previous assimilation window.
This also means that we only need the prior error covariance at the final time. If we only
need the prior state covariance at certain times and for certain states, we can again use the
representer technique.

Introducing a pseudo-observation for a direct measurement of the state Yj(tf ) at the
final time allows us to compute the corresponding pseudo state representer function Υ∗j .
Now recall that the state representer function is the covariance of the state with the mea-
surement prediction, which in the case of our pseudo-observation is the state at the final
time (Sections 2.4.1 and A.2.1). Therefore, the pseudo representer function Υ∗j(tf ) at the
final time includes the prior state cross-covariance at the final time.

[CY ′Y ′(tf , tf )]ij = Υ
∗j
i (tf ) (2.38)

It is important to note that the computation of the pseudo state representer function Υ∗j

does not require the specification of a corresponding measurement error covariance or a
pseudo measurement value. In the representer technique, all the prior knowledge is en-
capsulated in the representer functions and the representer matrix, which are completely
separate from the measurement error covariance. In fact, by comparing (2.9) and (2.24)
we see that the representer functions are computed using unit impulses instead of the data
misfit terms in the backward equation.

2.5 Data Compression and Observing System Assessment

Satellite images often contain a lot of redundant information. When such images are trans-
mitted, image compression is routinely used to minimize the number of bits being trans-
ferred. Similarly, treating each pixel of the image as a separate data point in the assimilation
algorithm may be very inefficient.

Whether or not data compression techniques help reduce the computational effort re-
quired by the data assimilation scheme depends on the assimilation method. If the objective
function (2.5) is minimized directly with a gradient search technique, the search happens
effectively in the space of the uncertain inputs. If model error is included, this space is
more or less equivalent to the state space and hence very big (Section 8.3). Moreover,
compressing the data does not lead to significant computational savings because the state
space remains unchanged when the data are compressed.

In the representer technique, on the other hand, the search consists mainly of solving
(2.26) for the representer coefficients, where the dimension of the space involved is equal
to the number of observations. We can say that the search is carried out in the data space
and that the unobservable modes have been discarded a priori [Bennett, 1992].

Since in land-surface data assimilation there are generally a lot fewer observations than
states, the representer method is an elegant way to reduce the size of the estimation problem
by searching only the data space. In addition, the representer method offers the intriguing
possibility to save even more computational effort by compressing the data a priori [Bennett
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et al., 1993]. If each satellite image is compressed linearly, for example with a singular value
decomposition or a two-dimensional Fourier Transform, the assimilated data vector Z can
simply be defined as a collection of linear combinations of the original observations.
The degree of meaningful compression and the corresponding savings depend of course on

the problem at hand. Note that data compression does not generally mean that observations
are discarded. In fact, we typically use all the original observations, but instead of looking
at the individual measurements which are supplied by the sensor, we focus on the dominant
linear combinations.
It is also important to emphasize that the indirect representer method and a priori data

compression may achieve related savings. Data compression might therefore not be of much
additional help if the estimates are computed with the indirect representer method (Sec-
tion 2.3.4). In contrast, only data compression may make the calculation of the posterior
error covariances feasible, because for the posterior covariances the individual represen-
ter functions are needed (Section 2.4.1), and their number is equal to the length of the
(compressed) data vector Z. Results related to this question are presented in Section 8.2.1.
Within the (direct) representer technique, we can also assess the observing system a

posteriori by carrying out an eigenvalue decomposition of the matrix U ≡ (Cv +R) (2.27).
Note that the inverse is unstable if the matrix U is poorly conditioned. If this is the
case, the measurement functional could be rotated and the modes corresponding to very
small eigenvalues could be discarded to stabilize the assimilation algorithm. This technique
amounts to compressing the data a posteriori. For details see [Bennett, 1992].
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